

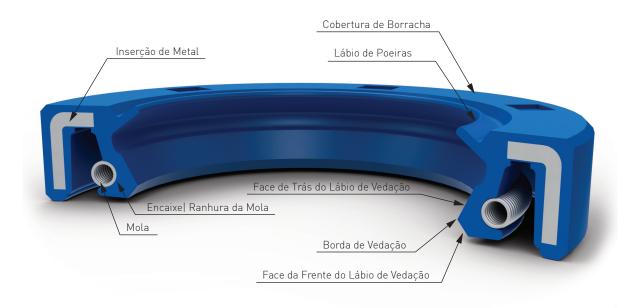
__CATÁLOGO RETENTORES

INDÚSTRIA DE MOLDES

HIDRÁULICA

PNEUMÁTICA

HM032-02 | 5ª Edição | Abril 2021



Informação Geral

Os retentores são anéis de vedação presentes em objetos usados no dia a dia, tal como carros, camiões, eletrodomésticos, máguinas agrícolas, aviões, máguinas industriais.

Desenvolvidos para eixos rotativos ou rolamentos, os retentores industriais, têm como principais funções:

- Reter óleos, lubrificantes e outros tipos de fluídos contidos no interior de uma máquina;
- Separar dois meios diferentes;
- Vedar sob pressão;
- Impedir a entrada de impurezas do exterior, tais como terra, areia, poeiras, etc., estando preparados para exercer a sua função de vedação quer na condição estática, quer na condição dinâmica de uma máquina.

Os retentores são compostos por várias partes, permitindo-lhe um correto funcionamento.

Vedação Principal ou Lábio de Vedação (face da frente) - Desenhado de forma a envolver o eixo, exercendo uma ação de vedação quando este se encontra na condição estática ou dinâmica.

Mola - Tem como função, compensar a carga radial exercida sobre o eixo.

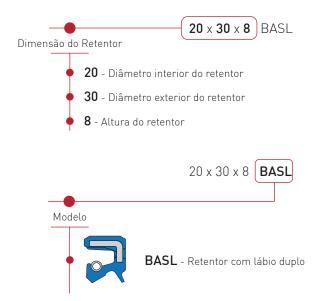
Vedação Auxiliar ou Segundo Lábio (face de trás) - Protege, das sujidades, não só a vedação principal do retentor, mas também os restantes elementos que o compõem. Esta vedação auxiliar não é usada em todos os retentores.

Cobertura de Borracha - Confere a estrutura ao retentor, para que este possa suportar o seu perfil e também para a montagem no alojamento.

Modelos e Designações

Como poderemos observar na tabela abaixo, existem vários modelos de retentores, que se distinguem uns dos outros em função da forma do lábio e do tipo de cobertura. Consoante o fabricante, estes também são conhecidos por diferentes nomes.

	Perfis								
Marcas									
SMIRIT	BASL	ВА	B1SL	B1	B2SL	B2	BAOF	BADUO	BABSL
NAK	TC	SC	TB	SB	TA	SA	VC/KC	DC	TCN11
STEFA	CC	СВ	BC	BB	DC	DB	CD/BD	-	-
DIN3760/3761	AS	А	BS	В	CS	С	DINA	AS-DU0	AS-P
CR-SKF	HMSA7	HMS4	CRWA1	CRW1	CRWAH1	CRWH1	÷	-	CRW5/CRWA5


Tabela 1 - Indica a designação dos retentores em função da forma do lábio e do tipo de cobertura.

Os modelos BASL, BA, BAOF, BADUO e BABSL possuem uma chapa em aço revestida no exterior e interior por Nitrilo (NBR) ou Viton (FPM), que proporciona uma vedação perfeita entre o exterior do retentor e a caixa.

Os modelos B1SL, B1, B2SL e B2 têm o exterior em aço, tornando-se vantajoso nos casos em que a montagem ou aplicação do retentor possa danificar o material elástico exterior, no interior possuem revestimento em NBR ou Viton.

A identificação da nossa referência

O reconhecimento de um retentor não é difícil, basta estarmos atentos a alguns pormenores existentes na peça e que, indiretamente, nos fornecem toda a informação que necessitamos, tal como tamanho, modelo, material.

Modelos e Designações

Materiais

A forma não é o único fator importante num retentor, os materiais em que é fabricado também o são pois apresentam características e propriedades específicas.

Não existe uma regra para determinar qual o tipo de retentor mais apropriado para uma determinada aplicação, apenas podemos ter em conta alguns aspetos para que a escolha seja a mais adequada possível, pois dela dependerá a vida útil e o desempenho do mesmo.

Estes aspetos variam entre as condições de funcionamento da aplicação (temperatura, velocidade, diferencial de pressão, tipo de lubrificante orientação, etc.); condições ambientais (resistência química, resistência a altas e baixas temperaturas, resistência ao ozono e aos agentes atmosféricos, etc.); condições do material (resistência ao desgaste, fricção, compressão, elasticidade, etc.); entre outros aspetos.

Um retentor é composto por vários materiais:

1| Inserção Metálica - Desenhada com o intuito de proporcionar ao retentor a rigidez necessária permitindo uma ligação estável. (Esta solução apresenta vantagens como eliminação de riscos de corrosão, evita danos na vedação, etc.) Normalmente são fabricados em aço carbono laminado a frio (SS 141142, DIN 14301).

2| Molas - As molas são fabricadas em aço carbono (SS 141774, DIN 17223), caso seja necessária uma maior resistência à corrosão é utilizado aco inoxidável (SS 142332, DIN 14301).

3| Cobertura de Borracha - Da cobertura fazem parte o corpo do retentor, o lábio de vedação ou vedação principal e, nalguns casos, o lábio de poeiras também chamado de vedação auxiliar.

Esta pode ser fabricada em vários materiais, tais como borracha nitrilica (NBR) ou borracha fluorada (FPM), dependendo da aplicação do retentor.

Borracha Nitrilica (NBR) - Considerada como o material universal dos vedantes, a borracha nitrilica é um copolímero produzido a partir da acrilonitrila e do butadieno. Possui propriedades muito boas, podendo suportar temperaturas de funcionamento até +120°C. Caso seja exposto a temperaturas mais altas, o material endurece.

Borracha Fluorada (VITON) - Polímero de hidrocarboneto altamente fluorado. É caractarizado pela elevada resistência térmica e química, ou seja, possuem propriedades excecionalmente boas, mesmo sob condições ambientais rigorosas, podendo suportar temperaturas de funcionamento de até +200 °C.

Obs: Quando exposta a temperaturas acima dos +300°C a borracha fluorada liberta vapores prejudiciais. Apesar destes vapores serem libertados somente a altas temperaturas, a partir do momento em que o retentor é aquecido o seu manuseamento torna-se perigoso, quer tenha arrefecido ou não.

Montagem

Quando montamos um retentor, temos de ter atenção a alguns aspetos, tais como:

Armazenamento

Os retentores, enquanto esperam pela sua utilização, devem ser guardados em locais minimamente limpos, livres de contaminações, com temperatura adequada, etc.

Manipulação

Os retentores devem ser manuseados com cuidado para não deformarem, para que a sua função e o bom funcionamento do mesmo não seja comprometido.

Lubrificação

Ao instalarmos um retentor, o lábio deste deve ser lubrificado com o lubrificante a ser vedado, de forma a garantir uma boa instalação e a reduzir a tensão de corte.

Em casos de máquinas que exerçam uma ação de bombeamento evitando que o óleo chegue ao retentor ou que cause fluxo excessivo de óleo no mesmo, devem realizar-se canais de circulação para que a lubrificação seja feita.

Em máquinas onde, por norma, o retentor não está lubrificado, a lubrificação deve ser proporcionada por outros meios.

Montagem

- Alojamento:

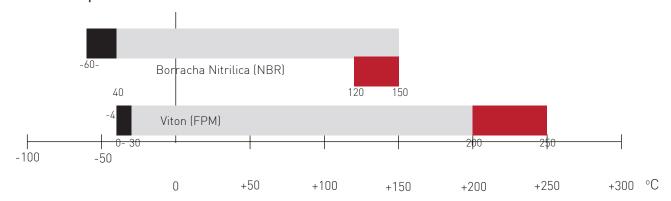
A superfície frontal do alojamento, normalmente, é utilizada como superfície de referência para a montagem. Durante a instalação do retentor no alojamento, e de forma a nos facilitar a mesma, devemos usar uma ferramenta especial de montagem. Para evitar deformações, a superfície de apoio do retentor deverá estar o mais próximo do diâmetro externo do retentor.

Devemo-nos certificar que este se encontra perpendicular ao eixo, pois se o retentor ficar inclinado, o lábio vai expulsar o óleo a partir do eixo.

- Eixo:

Antes de montarmos o retentor no eixo, devemos verificar se o eixo não tem qualquer tipo de irregularidade que possa danificar o retentor ou que possa fornecer caminhos de fuga. Se existir alguma ranhura no eixo, esta deverá ser reparada antes de ser colocado um novo retentor. Caso não seja possível a reparação das irregularidades, este deve ser protegido por uma luva de instalação para que não fique danificado.

Desmontagem


A desmontagem do retentor, por norma, não apresenta problemas. Pode desmontar-se com a ajuda de uma chave de fendas ou outra ferramenta, como consequência o retentor pode deformar-se.

Sempre que for necessário desmontar um retentor após ter sido usado, mesmo que este ainda se encontre em bom estado, recomenda-se a colocação de um novo retentor.

Funcionamento

Limites de Temperatura

Resistência à temperatura

A temperatura é um fator determinante na vida útil do retentor.

Com o aumento da temperatura, o retentor mais rapidamente mostrar sinais de envelhecimento através do endurecimento e da redução de elasticidade da borracha. Fendas nas arestas de vedação são sinais evidentes de que o retentor foi exposto a alta temperatura.

Perdas

A retenção absoluta ou a 100%, é algo que não se consegue, mas o funcionamento de um retentor, sem qualquer tipo de lubrificação destrói o lábio de vedação.

Portanto, é preferível aceitar uma perda mínima na vedação em vez da deterioração do retentor devido à falta de lubrificação.

Velocidade Periférica ou Rotação

As velocidades de rotação admissíveis estão determinadas pelo diâmetro da superfície de vedação e pelas velocidades periféricas admissíveis na posição de vedação.

A velocidade periférica admissível depende principalmente do desenho, do material do lábio de vedação e, por vezes, do estado da zona de contacto.

A lubrificação influência de igual forma assim como o tipo e características do fluido que está a ser vedado, já que este poderia dissipar o calor de contacto do lábio.

Pressão

Quando existe pressão sobre o ponto de vedação, o lábio de vedação será pressionado adicionalmente sobre o eixo, gerando atritos e uma temperatura mais elevada debaixo do lábio de vedação do retentor.

Esses valores apenas são válidos para sistemas com eixos cheios e com boa retirada de calor através do produto a ser vedado. Em caso de pressão negativa temporária no ponto de vedação, poderá ser necessário um segundo retentor com lábio de vedação direcionado para o exterior. Todos os retentores submetidos à pressão devem ser protegidos, no lado contrário da pressão.

A pressão de trabalho para estes retentores está entre 0.2 e 0.5 bar.

Resistência ao desgaste

A resistência ao desgaste dos retentores está determinada em grande parte pelo material do lábio de vedação.

O acabamento da face, o tipo de lubrificação, a velocidade periférica, a temperatura e a diferença de pressão, também poderão ser fator de grande influência.

Resistência Química

As propriedades químicas do retentor são determinadas pelo material em que é feito, sendo influenciadas pela temperatura, os meios e a diferença de pressão.

